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Anwendung: Schwache 
KI

• Empfehlungen

• Übersetzung

• Einzelne Spiele (z.B. 
Schach)

Forschung: General game-
playing KI

• Deep-Q Network (Mnih et 
al., 2015)

• AlphaZero (Silver et al., 
2017)
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KI: Agent, welcher mit maschinellem Lernen Probleme löst

Künstliche Intelligenz (KI)

Zukunft: Starke KI?



Forschungsfragen

1. Wie unterscheiden sich die Denkprozesse von Menschen und KI?

2. Wie ist die Dynamik von Wettbewerb und Kooperation?

3



Methode

Planspiel

KI (Alpha Go 
Nachbau)

Teilnehmer
(n=6)

Think-aloud

Spieldaten
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Insights



Unternehmensplanspiel
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KI Architektur

Hidden layerInput layer Output layer

Figure 2: Illustration of an artificial neural network

thereafter. By building up a memory of tuples (s, a, r, s0) the agent iteratively
approximates Q(s, a) for all state transitions, eventually leading to optimal play.

With Deep Q-Learning, the agent no longer builds up a memory by storing
observed transitions and rewards, but instead an ANN is trained to estimate Q(s, a).
It takes in information on the current state and gives an estimate for the Q-value
of each each action. The structure of ANNs is modeled after the human brain
(McCulloch and Pitts 1943). It is made up of an input layer, a number of hidden
layers, and an output layer (see figure 2). In the Deep Q-network (DQN) by Mnih
et al. (2015), the network takes the color values of the pixels on the screen of an
Atari 2600 as its node inputs. Each input node is fully connected to each node in the
following hidden layer, and each edge specifies a weight by which the node input is
multiplied. In order to reduce the complexity of the input, Mnih et al. (2015) make
use of convolutional layers, which summarize information. After the values have
passed through all hidden layers, they are fed into the output layer. In a DQN, the
output layer has one node for each possible action of the player. The node with the
highest value is the best recommendation of the Deep Q-network given the observed
state of the game.

A DQN is trained through learning-by-doing. First, the weights of its edges are
randomized. In the first round of the first game, it takes in the state information
and returns an essentially random action. Then, it receives feedback from the game
in the form of a reward value.

2.1.3 Review and a combined system

The DQN and MCTS algorithms have a striking similarity to the systems of human
thought identified by Amos Tversky and Daniel Kahneman (Kahneman 2003). System
1 is intuitive, fast, effortless and relies on slow accumulation of experience. The
DQN matches these attributes. As with the human system 1, it can make almost
instantaneous judgments and relies on its training. In the same way as the human

9

expanding its search. It is a self-play reinforcement learning algorithm designed for
decision tasks with a large branching factor (Gelly and Silver 2011). Given enough
computation time and memory, it is guaranteed to build the optimal decision tree.
Its performance in realistic scenarios is proven in two-player perfect-information
games (Gelly and Silver 2011).

In MCTS, each node of the decision tree is an action by the MCTS agent or its
opponent. A node i holds four values: the number of times this node was selected
(ni), the number of times the parent node was selected (N), the cumulative rewards
(t) and the UCB1 value, which is calculated as follows:

UCB1(Si) =
t

n
+ C

s
ln(N)

ni
(1)

where C is the exploration constant. The left hand part of the equation is the
exploitation part. The goal of the algorithm is to find the actions that lead to the
highest value, therefore, nodes which promise a higher average reward are tested
first. The right hand part represents exploration. In order to avoid finding a local
minimum or missing devastating opponent moves, the algorithm also gives greater
weight to moves that are less explored. The term under the square root is infinite
if the node has not been explored. It decreases as the node is chosen more often,
and increases when sibling nodes are selected. The exploration constant C is used to
manually balance exploration and exploitation parts.

Figure 1: Steps of Monte Carlo Tree Search

Figure by Browne et al. (2012).

The MCTS algorithm has four steps which are repeated for as many iterations
as permitted by time (Browne et al. 2012). The four steps are selection, expansion,
simulation and backpropagation (see figure 1).
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Monte Carlo Tree Search (MCTS)
Browne et al. (2012)

Neuronales Netzwerk
(Value Network)
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Think-aloud Protokolle

Think-
aloud

Protokolle

Inhalts-
analyse

• Systeme 1 & 2 (Kahneman, 2003)
• Bounded rationality (Simon, 1972)
• Anthropromorphismus
• Rollenspiel
• Wettbewerbsverhalten
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Ergebnisse
Mensch KI
Anreize & eigene, flexible Ziele Gegebene Nutzenfunktion

Bounded rationality, Heuristiken
System 1 & System 2 Value Net + MCTS
Rollenspiel & Anthropromorphismus Keine Rollenbilder oder Reziprozität
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Monte Carlo Tree Search Planspiel Value Net
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